climatology
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
- Open Washington Pressbooks - SFCC Weather and Climate - Koppen Climate Zones
- Salt Lake Community College Pressbooks - Köppen Classification System
- Science On a Sphere - Koppen-Geiger Climate Changes -1901-2100
- Oregon State University Pressbooks - Permaculture Design: Tools for Climate Resilience - Koppen Geiger Classification Descriptions
- Nature - Scientific Data - Present and future Köppen-Geiger climate classification maps at 1-km resolution
- Mustansiriyah University - Climate classification
- BCcampus Open Publishing - Köppen Climate Classification System
printPrint
Please select which sections you would like to print:
verifiedCite
While every effort has been made to follow citation style rules, there may be some discrepancies.Please refer to the appropriate style manual or other sources if you have any questions.
Select Citation Style
Feedback
Thank you for your feedback
Our editors will review what you’ve submitted and determine whether to revise the article.
External Websites
- Open Washington Pressbooks - SFCC Weather and Climate - Koppen Climate Zones
- Salt Lake Community College Pressbooks - Köppen Classification System
- Science On a Sphere - Koppen-Geiger Climate Changes -1901-2100
- Oregon State University Pressbooks - Permaculture Design: Tools for Climate Resilience - Koppen Geiger Classification Descriptions
- Nature - Scientific Data - Present and future Köppen-Geiger climate classification maps at 1-km resolution
- Mustansiriyah University - Climate classification
- BCcampus Open Publishing - Köppen Climate Classification System
Also known as: Köppen-Geiger-Pohl climate classification
Written by
A. John Arnfield
Fact-checked by
The Editors of Encyclopaedia Britannica
Last Updated: •Article History
- Key People:
- Wladimir Köppen
- Related Topics:
- highland climate
- type C climate
- type B climate
- continental climate
- type A climate
- On the Web:
- Mustansiriyah University - Climate classification (Sep. 13, 2024)
See all related content →
Top Questions
What is a climate classification?
What is a climate classification?
A climate classification is a tool used to recognize, clarify, and simplify the climatic similarities and differences between geographic areas in order to help us better understand Earth’s climates. Classification schemes rely on environmental data, such as temperature, rainfall, and snowfall, to uncover patterns and connections between climatic processes.
climate classificationRead more about climate classification.
climateLearn more about climate, its drivers, and its effects.
Are there different kinds of climate classifications?
Are there different kinds of climate classifications?
Climate classifications fall into two categories: genetic and empirical. Genetic classifications group climates by their causes, focusing on how temperature relates to distance from the North Pole or South Pole or Equator, continentality versus ocean-influenced factors, the effects of mountains, or combinations of several factors. Genetic classifications are qualitative, and climatic regions are drawn in a subjective manner. In contrast, empirical classifications—such as the Köppen climate classification—group each climate type according to one or more aspects of the climate system, such as natural vegetation.
continentalityLearn more about how distance from the oceans affects climate.
Who was Wladimir Köppen?
Who was Wladimir Köppen?
Wladimir Köppen (1846–1940) was a German meteorologist and climatologist best known for his delineation and mapping of the climatic regions of the world. He played a major role in the advancement of climatology and meteorology for more than 70 years. Köppen’s achievements, practical and theoretical, profoundly influenced the development of atmospheric science. His greatest achievement came in 1900, when he introduced his mathematical system of climatic classification. Each of five major climate types was assigned a mathematical value according to temperature and rainfall. Since then, many of the systems introduced by other scholars have been based on Köppen’s work.
Wladimir KöppenLearn more about German meteorologist and climatologist Wladimir Köppen.
What are Köppen’s five main climate types?
What are Köppen’s five main climate types?
- The Köppen classification subdivides terrestrial climates into five major types, represented by the capital letters A, B, C, D, and E.
- Type B climates are defined by dryness; all others are defined by temperature.
- Type A climates focus on the seasonality of their precipitation.
- Type E climates are separated into tundra (ET) and snow/ice climates (EF).
- The midlatitude C and D climates are given a second letter, f (no dry season), w (winter dry), or s (summer dry), and a third symbol, a, b, c, or d (the last subclass exists only for D climates), indicating summer warmth or winter coldness.
- The H climate (highlands), which Köppen did not use, is sometimes added to other classifications to account for elevations above 1,500 metres (about 4,900 feet).
marine west coast climateLearn more about marine west coast climates.
highland climateLearn more about highland climates.
Köppen climate classification, widely used, vegetation-based, empirical climate classification system developed by German botanist-climatologist Wladimir Köppen. His aim was to devise formulas that would define climatic boundaries in such a way as to correspond to those of the vegetation zones (biomes) that were being mapped for the first time during his lifetime. Köppen published his first scheme in 1900 and a revised version in 1918. He continued to revise his system of classification until his death in 1940. Other climatologists have modified portions of Köppen’s procedure on the basis of their experience in various parts of the world.
System
Köppen’s classification is based on a subdivision of terrestrial climates into five major types, which are represented by the capital letters A, B, C, D, and E. Each of these climate types except for B is defined by temperature criteria. Type B designates climates in which the controlling factor on vegetation is dryness (rather than coldness). Aridity is not a matter of precipitation alone but is defined by the relationship between the precipitation input to the soil in which the plants grow and the evaporative losses. Since evaporation is difficult to evaluate and is not a conventional measurement at meteorological stations, Köppen was forced to substitute a formula that identifies aridity in terms of a temperature-precipitation index (that is, evaporation is assumed to be controlled by temperature). Dry climates are divided into arid (BW) and semiarid (BS) subtypes, and each may be differentiated further by adding a third code, h for warm and k for cold.
As noted above, temperature defines the other four major climate types. These are subdivided, with additional letters again used to designate the various subtypes. Type A climates (the warmest) are differentiated on the basis of the seasonality of precipitation: Af (no dry season), Am (short dry season), or Aw (winter dry season). Type E climates (the coldest) are conventionally separated into tundra (ET) and snow/ice climates (EF). The mid-latitude C and D climates are given a second letter, f (no dry season), w (winter dry), or s (summer dry), and a third symbol (a, b, c, or d [the last subclass exists only for D climates]), indicating the warmth of the summer or the coldness of the winter. Although Köppen’s classification did not consider the uniqueness of highland climate regions, the highland climate category, or H climate, is sometimes added to climate classification systems to account for elevations above 1,500 metres (about 4,900 feet).
letter symbol | |||
---|---|---|---|
1st | 2nd | 3rd | criterion |
1In the formulas above, r is average annual precipitation total (mm), and t is average annual temperature (°C). All other temperatures are monthly means (°C), and all other precipitation amounts are mean monthly totals (mm). | |||
2Any climate that satisfies the criteria for designation as a B type is classified as such, irrespective of its other characteristics. | |||
3The summer half of the year is defined as the months April–September for the Northern Hemisphere and October–March for the Southern Hemisphere. | |||
4Most modern climate schemes consider the role of altitude. The highland zone has been taken from G.T. Trewartha, An Introduction to Climate, 4th ed. (1968). | |||
Data Sources: Adapted from Howard J. Critchfield, General Climatology, 4th ed. (1983), and M.C. Peel, B.L. Finlayson, and T.A. McMahon, "Updated World Map of the Köppen-Geiger Climate Classification," Hydrology and Earth System Sciences, 11:1633–44 (2007). | |||
A | temperature of coolest month 18 °C or higher | ||
f | precipitation in driest month at least 60 mm | ||
m | precipitation in driest month less than 60 mm but equal to or greater than 100 – (r/25)1 | ||
w | precipitation in driest month less than 60 mm and less than 100 – (r/25) | ||
B2 | 70% or more of annual precipitation falls in the summer half of the year and r less than 20t + 280, or 70% or more of annual precipitation falls in the winter half of the year and r less than 20t, or neither half of the year has 70% or more of annual precipitation and r less than 20t + 1403 | ||
W | r is less than one-half of the upper limit for classification as a B type (see above) | ||
S | r is less than the upper limit for classification as a B type but is more than one-half of that amount | ||
h | t equal to or greater than 18 °C | ||
k | t less than 18 °C | ||
C | temperature of warmest month greater than or equal to 10 °C, and temperature of coldest month less than 18 °C but greater than –3 °C | ||
s | precipitation in driest month of summer half of the year is less than 30 mm and less than one-third of the wettest month of the winter half | ||
w | precipitation in driest month of the winter half of the year less than one-tenth of the amount in the wettest month of the summer half | ||
f | precipitation more evenly distributed throughout year; criteria for neither s nor w satisfied | ||
a | temperature of warmest month 22 °C or above | ||
b | temperature of each of four warmest months 10 °C or above but warmest month less than 22 °C | ||
c | temperature of one to three months 10 °C or above but warmest month less than 22 °C | ||
D | temperature of warmest month greater than or equal to 10 °C, and temperature of coldest month –3 °C or lower | ||
s | same as for type C | ||
w | same as for type C | ||
f | same as for type C | ||
a | same as for type C | ||
b | same as for type C | ||
c | same as for type C | ||
d | temperature of coldest month less than –38 °C (d designation then used instead of a, b, or c) | ||
E | temperature of warmest month less than 10 °C | ||
T | temperature of warmest month greater than 0 °C but less than 10 °C | ||
F | temperature of warmest month 0 °C or below | ||
H4 | temperature and precipitation characteristics highly dependent on traits of adjacent zones and overall elevation—highland climates may occur at any latitude |
The Köppen classification has been criticized on many grounds. It has been argued that extreme events, such as a periodic drought or an unusual cold spell, are just as significant in controlling vegetation distributions as the mean conditions upon which Köppen’s scheme is based. It also has been pointed out that factors other than those used in the classification, such as sunshine and wind, are important to vegetation. Moreover, it has been contended that natural vegetation can respond only slowly to environmental change, so that the vegetation zones observable today are in part adjusted to past climates. Many critics have drawn attention to the rather poor correspondence between the Köppen zones and the observed vegetation distribution in many areas of the world. In spite of these and other limitations, the Köppen system remains the most popular climatic classification in use today.